Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.178
Filtrar
1.
Biomed Mater ; 19(3)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38518361

RESUMO

Rapid bone regeneration in implants is important for successful transplantation. In this regard, we report the development of calcium silicate/zinc silicate (CS/ZS) dual-compound-incorporated calcium phosphate cement (CPC) scaffolds with a three-dimensional poly (lactic-co-glycolic acid) network that synergistically promote bone regeneration.In vitroresults demonstrated that the incorporation of CS/ZS dual compounds into the CPC significantly promoted the osteogenic differentiation of stem cells compared to the addition of CS or ZS alone. Moreover, the bone-regeneration efficacy of the composite scaffolds was validated by filling in femur condyle defects in rabbits, which showed that the scaffolds with CS and ZS possessed a great bone repair effect, as evidenced by more new bone formation and a faster scaffold biodegradation compared to the scaffold with CS alone.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Compostos de Zinco , Animais , Coelhos , Tecidos Suporte , Zinco/farmacologia , Proliferação de Células , Compostos de Cálcio , Regeneração Óssea , Silicatos , Fosfatos de Cálcio/farmacologia
2.
Dent Mater J ; 43(2): 276-285, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38447980

RESUMO

Premixed calcium silicate cements (pCSCs) contain vehicles which endow fluidity and viscosity to CSCs. This study aimed to investigate the effects of three vehicles, namely, polyethylene glycol (PEG), propylene glycol (PG), and dimethyl sulfoxide (DMSO), on the physicochemical properties and biocompatibility of pCSCs. The setting time, solubility, expansion rate, and mechanical strength of the pCSCs were evaluated, and the formation of calcium phosphate precipitates was assessed in phosphate-buffered saline (PBS). The effects of pCSC extracts on the osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Finally, the tissue compatibility of pCSCs in rat femurs was observed. CSC containing PEG (CSC-PEG) exhibited higher solubility and setting time, and CSC-DMSO showed the highest expansion rate and mechanical strength. All pCSCs generated calcium phosphate precipitates. The extract of CSC-PG induced the highest expressions of osteogenic markers along with the greatest calcium deposites. When implanted in rat femurs, CSC-PEG was absorbed considerably, whereas CSC-PG remained relatively unaltered inside the femur.


Assuntos
Dimetil Sulfóxido , Osteogênese , Teste de Materiais , Compostos de Cálcio/farmacologia , Compostos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Silicatos/farmacologia , Silicatos/química , Cálcio , Cimento de Silicato/química , Cimentos Dentários/farmacologia , Cimentos Dentários/química
3.
Iran Biomed J ; 28(1): 38-45, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477251

RESUMO

Background: The surface properties of dental and orthopedic implants are directly related to their osseointegration rate. Coating and/or modifying the implant surface might reduce the time of healing. In this study, we aimed to examine the effects of a hybrid surface consisting of a brushite surface coating and cross-linked water-soluble eggshell membrane protein on the osseointegration of titanium (Ti) screws under in vivo conditions. Methods: Twenty Ti alloy screws were implanted monocortically in anteromedial regions of New Zealand rabbit tibiae. Ten screws were untreated and used as controls. The remaining 10 screws were coated with calcium phosphate and following cross-linked with ostrich eggshell membrane protein. All rabbits were sacrificed six weeks after the surgery. Peri-screw tissues were evaluated by micro-computed tomography (µ-CT), histological and histomorphometrical methods. Results: The µ-CT assessments indicated that the experimental group had significantly higher mean bone surface area (BSA) and trabeculae number (TbN) than those of the control group (p ˂ 0.05). Bone surface area (BV), trabecular separation (TbSp), trabecular thickness (TbTh), and bone mineral density (BMD) scores of the control and experimental groups were quite similar (p > 0.05). The vascularization score of the experimental group was significantly higher than the control group (4.29 vs. 0.92%). No sign of the graft-versus-host reaction was observed. Conclusion: Our findings reveal that coating Ti alloy implants with calcium phosphate cross-linked with ostrich eggshell membrane protein increases the osseointegration of Ti alloy screws by increasing the bone surface area, number of trabeculae and vascularization in the implant site.


Assuntos
Osseointegração , Titânio , Coelhos , Animais , Titânio/farmacologia , Água , Ligas/farmacologia , Microtomografia por Raio-X , Casca de Ovo , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos de Cálcio/farmacologia , Proteínas de Membrana , Propriedades de Superfície
4.
J Dent ; 143: 104906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428715

RESUMO

OBJECTIVE: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. METHODS: Experimental resin-based composites containing different concentrations (0-20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). RESULTS: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). CONCLUSIONS: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release. CLINICAL SIGNIFICANCE: Novel composites containing fluoride-doped calcium phosphates may be promising to modulate bacteria growth, promote remineralisation and reduce the risk of cytotoxicity related to monomers' elution.


Assuntos
Fluoretos , Fosfatos , Fosfatos/farmacologia , Fosfatos/química , Fluoretos/farmacologia , Fluoretos/química , Teste de Materiais , Resinas Compostas/farmacologia , Resinas Compostas/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Fluoreto de Cálcio , Antibacterianos/farmacologia
5.
J Dent ; 143: 104909, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428717

RESUMO

OBJECTIVES: This in vitro study aimed to evaluate the effect of resin infiltration combined with casein phosphopeptide-amorphous calcium phosphate with fluoride (CPP-ACPF) or bioactive glass (BAG) on the stability of enamel white spot lesions (WSLs) treatment. MATERIALS AND METHODS: Eighty-four enamel blocks were prepared from the buccal surfaces of sound human premolars. All enamel blocks were placed in a demineralisation solution for 3 days to establish the artificial enamel WSLs. Enamel blocks with WSLs were randomly divided into three groups (n = 28 each group): RI/B: one-off resin infiltration followed by twice daily BAG treatment; RI/C: one-off resin infiltration followed by twice daily CPP-ACPF treatment; RI: one-off resin infiltration treatment only (as control) and subjected to pH cycling for 7 days. Surface morphology, elemental analysis, crystal characteristics, surface roughness and microhardness of enamel surfaces were investigated by scanning electron microscopy and energy-dispersive spectrometry observation, X-ray diffraction (XRD), atomic force microscope and Vickers' hardness testing, respectively. RESULTS: Mean values of the surface roughness (mean±standard deviation (nm)) were 24.52±5.07, 27.39±5.87 and 34.36±4.55 for groups RI/B, RI/C and RI respectively (p = 0.003). The calcium to phosphate ratios were 1.32±0.16, 1.22±0.26 and 0.69±0.24 for groups RI/B, RI/C and RI respectively (p < 0.001). XRD revealed apatite formation in all three groups. The mean enamel surface microhardness (kg/mm2) of the groups were 353.93±28.49, 339.00±27.32 and 330.38±22.55 for groups RI/B, RI/C and RI respectively (p = 0.216). CONCLUSIONS: Resin infiltration combined with CPP-ACPF or BAG remineralisation appears to improve the surface properties of WSLs. CLINICAL SIGNIFICANCE: The combination of resin infiltration and CPP-ACPF/BAG remineralisation may be a potential treatment for the management of the WSLs.


Assuntos
Cárie Dentária , Esmalte Dentário , Humanos , Esmalte Dentário/patologia , Fluoretos/farmacologia , Fluoretos/uso terapêutico , Fluoretos/análise , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/uso terapêutico , Cárie Dentária/patologia
6.
J Mech Behav Biomed Mater ; 153: 106500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484429

RESUMO

One strategy to correct alveolar bone defects is use of bioactive bone substitutes to maintain the structure of defect site and facilitate cells and vessels' ingrowth. This study aimed to fabricate and characterize the freeze-dried bone regeneration scaffolds composed of polymeric Type I collagen, nano Beta-tricalcium phosphate (ß-TCP), and gelatin. The stable structures of scaffolds were obtained by thermal crosslinking and EDC/NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)/(N-hydroxysuccinimide)) chemical crosslinking processes. Subsequently, the physicochemical and biological properties of the scaffolds were characterized and assessed. The results indicated the bioactive composite scaffolds containing 10% and 20% (w/v) nano ß-TCP exhibited suitable porosity (84.45 ± 25.43 nm, and 94.51 ± 14.69 nm respectively), a rapid swelling property (reaching the maximum swelling rate at 1 h), excellent degradation resistance (residual mass percentage of scaffolds higher than 80% on day 90 in PBS and Type I collagenase solution respectively), and sustained calcium release capabilities. Moreover, they displayed outstanding biological properties, including superior cell viability, cell adhesion, and cell proliferation. Additionally, the scaffolds containing 10% and 20% (w/v) nano ß-TCP could promote the osteogenic differentiation of MC3T3-E1. Therefore, the bioactive composite scaffolds containing 10% and 20% (w/v) nano ß-TCP could be further studied for being used to treat alveolar bone defects in vivo.


Assuntos
Gelatina , Osteogênese , Gelatina/farmacologia , Tecidos Suporte/química , Regeneração Óssea , Colágeno/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Polímeros , Engenharia Tecidual/métodos
7.
ACS Biomater Sci Eng ; 10(4): 2062-2067, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38466032

RESUMO

Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.


Assuntos
Cimentos Ósseos , Polietilenoglicóis , Polietilenoglicóis/farmacologia , Estudos Prospectivos , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Polímeros , Ácidos Dicarboxílicos/farmacologia
8.
Dent Mater ; 40(4): 593-607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365457

RESUMO

OBJECTIVES: A calcium phosphate extracted from fish bones (CaP-N) was evaluated for enamel remineralization and dentinal tubules occlusion. METHODS: CaP-N was characterized by assessing morphology by SEM, crystallinity by PXRD, and composition by ICP-OES. CaP-N morphology, crystallinity, ion release, and pH changes over time in neutral and acidic solutions were studied. CaP-N was then tested to assess remineralization and dentinal tubules occlusion on demineralized human enamel and dentin specimens (n = 6). Synthetic calcium phosphate in form of stoichiometric hydroxyapatite nanoparticles (CaP-S) and tap water were positive and negative controls, respectively. After treatment (brush every 12 h for 5d and storage in Dulbecco's modified PBS), specimens' morphology and surface composition were assessed (by SEM-EDS), while the viscoelastic behavior was evaluated with microindentation and DMA. RESULTS: CaP-N consisted of rounded microparticles (200 nm - 1 µm) composed of 33 wt% hydroxyapatite and 67 wt% ß-tricalcium phosphate. In acidic solution, CaP-N released calcium and phosphate ions thanks to the preferential ß-tricalcium phosphate phase dissolution. Enamel remineralization was induced by CaP-N comparably to CaP-S, while CaP-N exhibited a superior dentinal tubule occlusion than CaP-S, forming mineral plugs and depositing new nanoparticles onto demineralized collagen. This behavior was attributed to its bigger particle size and increased solubility. DMA depth profiling and SEM showed an excellent interaction between the newly formed mineralized structures and the pristine tissue, particularly at the exposed collagen fibrils. SIGNIFICANCE: CaP-N demonstrated very good remineralizing and occlusive activity in vitro, comparable to CaP-S, thus could be a promising circular economy alternative therapeutic agent for dentistry.


Assuntos
Dentina , Hidroxiapatitas , Remineralização Dentária , Animais , Humanos , Dentina/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Esmalte Dentário , Cálcio/análise , Durapatita/farmacologia , Durapatita/química , Colágeno
9.
Int J Nanomedicine ; 19: 993-1016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299194

RESUMO

Background: The M1/M2 polarization of intestinal macrophages exerts an essential function in the pathogenesis of ulcerative colitis (UC), which can be adjusted to alleviate the UC symptoms. Purpose: A kind of pH-sensitive lipid calcium phosphate core-shell nanoparticles (NPs), co-loading with dexamethasone (Dex) and its water-soluble salts, dexamethasone sodium phosphate (Dsp), was constructed to comprehensively regulate macrophages in different states towards the M2 phenotype to promote anti-inflammatory effects. Methods: Dex and Dsp were loaded in the outer lipid shell and inner lipid calcium phosphate (Cap) core of the LdCaPd NPs, respectively. Then, the morphology of NPs and methods for determining drug concentration were investigated, followed by in vitro protein adsorption, stability, and release tests. Cell experiments evaluated the cytotoxicity, cellular uptake, and macrophage polarization induction ability of NPs. The in vivo distribution and anti-inflammatory effect of NPs were evaluated through a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced BALB/c mice ulcerative colitis model. Results: The LdCaPd NPs showed a particle size of about 200 nm and achieved considerable loading amounts of Dex and Dsp. The in vitro and in vivo studies revealed that in the acidic UC microenvironment, the cationic lipid shell of LdCaPd underwent protonated dissociation to release Dex first for creating a microenvironment conducive to M2 polarization. Then, the exposed CaP core was further engulfed by M1 macrophages to release Dsp to restrict the pro-inflammatory cytokines production by inhibiting the activation and function of the nuclear factor kappa-B (NF-κB) through activating the GC receptor and the NF kappa B inhibitor α (I-κBα), respectively, ultimately reversing the M1 polarization to promote the anti-inflammatory therapy. Conclusion: The LdCaPd NPs accomplished the sequential release of Dex and Dsp to the UC site and the inflammatory M1 macrophages at this site, promoting the regulation of macrophage polarization to accelerate the remission of UC symptoms.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Fosfatos de Cálcio/farmacologia , Lipídeos/efeitos adversos
10.
ACS Biomater Sci Eng ; 10(3): 1435-1447, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38330203

RESUMO

Addressing the repair of large-scale bone defects has become a hot research topic within the field of orthopedics. This study assessed the feasibility and effectiveness of using porous tantalum scaffolds to treat such defects. These scaffolds, manufactured using the selective laser melting (SLM) technology, possessed biomechanical properties compatible with natural bone tissue. To enhance the osteogenesis bioactivity of these porous Ta scaffolds, we applied calcium phosphate (CaP) and magnesium-doped calcium phosphate (Mg-CaP) coatings to the surface of SLM Ta scaffolds through a hydrothermal method. These degradable coatings released calcium and magnesium ions, demonstrating osteogenic bioactivity. Experimental results indicated that the Mg-CaP group exhibited biocompatibility comparable to that of the Ta group in vivo and in vitro. In terms of osteogenesis, both the CaP group and the Mg-CaP group showed improved outcomes compared to the control group, with the Mg-CaP group demonstrating superior performance. Therefore, both CaP and magnesium-CaP coatings can significantly enhance the osseointegration of three-dimensional-printed porous Ta, thereby increasing the surface bioactivity. Overall, the present study introduces an innovative approach for the biofunctionalization of SLM porous Ta, aiming to enhance its suitability as a bone implant material.


Assuntos
Magnésio , Tantálio , Porosidade , Magnésio/farmacologia , Titânio , Fosfatos de Cálcio/farmacologia , Lasers
11.
BMC Oral Health ; 24(1): 279, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413983

RESUMO

BACKGROUND: Several methods were introduced for enamel biomimetic remineralization that utilize a biomimetic analogue to interact and absorb bioavailable calcium and phosphate ions and induce crystal nucleation on demineralized enamel. Amelogenin is the most predominant enamel matrix protein that is involved in enamel biomineralization. It plays a major role in developing the enamel's hierarchical microstructure. Therefore, this study was conducted to evaluate the ability of an amelogenin-inspired peptide to promote the remineralization potential of fluoride and a supersaturated calcium phosphate solution in treating artificially induced enamel carious lesions under pH-cycling regimen. METHODS: Fifty enamel slices were prepared with a window (4*4 mm2 ) on the surface. Five samples were set as control healthy enamel and 45 samples were subjected to demineralization for 3 days. Another 5 samples were set as control demineralized enamel and 40 enamel samples were assigned into 8 experimental groups (n=5) (P/I, P/II, P/III, P/AS, NP/I, NP/II, NP/III and NP/AS) according to peptide treatment (peptide P or non-peptide NP) and remineralizing solution used (I; calcium phosphate solution, II; calcium phosphate fluoride solution, III; fluoride solution and AS; artificial saliva). Samples were then subjected to demineralization/remineralization cycles for 9 days. Samples in all experimental groups were evaluated using Raman spectroscopy for mineral content recovery percentage, microhardness and nanoindentation as healthy, demineralized enamel and after pH-cycling. Data were statistically analysed using two-way repeated measures Anova followed by Bonferroni-corrected post hoc test for pairwise multiple comparisons between groups. Statistical significance was set at p= 0.05. Additionally, XRD, FESEM and EDXS were used for crystal orientation, surface morphology and elemental analysis after pH-cycling. RESULTS: Nanocrystals clumped in a directional manner were detected in peptide-treated groups. P/II showed the highest significant mean values in mineral content recovery (63.31%), microhardness (268.81±6.52 VHN), elastic modulus (88.74±2.71 GPa), nanohardness (3.08±0.59 GPa) and the best crystal orientation with I002/I300 (1.87±0.08). CONCLUSION: Despite pH changes, the tested peptide was capable of remineralizing enamel with ordered crystals. Moreover, the supplementary use of calcium phosphate fluoride solution with peptide granted an enhancement in enamel mechanical properties after remineralization.


Assuntos
Cárie Dentária , Fluoretos , Humanos , Fluoretos/farmacologia , Amelogenina/farmacologia , Amelogenina/uso terapêutico , Cariostáticos/farmacologia , Cariostáticos/uso terapêutico , Biomimética , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/uso terapêutico , Minerais , Fosfatos , Remineralização Dentária/métodos , Concentração de Íons de Hidrogênio
12.
ACS Biomater Sci Eng ; 10(2): 1077-1089, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301150

RESUMO

It is known that hydroxyapatite-type calcium phosphate cement (CPC) shows appreciable self-curing properties, but the phase transformation products often lead to slow biodegradation and disappointing osteogenic responses. Herein, we developed an innovative strategy to endow invisible micropore networks, which could tune the microstructures and biodegradation of α-tricalcium phosphate (α-TCP)-based CPC by gypsum fibers, and the osteogenic capability of the composite cements could be enhanced in vivo. The gypsum fibers were prepared via extruding the gypsum powder/carboxylated chitosan (CC) slurry through a 22G nozzle (410 µm in diameter) and collecting with a calcium salt solution. Then, the CPCs were prepared by mixing the α-TCP powder with gypsum fibers (0-24 wt %) and an aqueous solution to form self-curing cements. The physicochemical characterizations showed that injectability was decreased with an increase in the fiber contents. The µCT reconstruction demonstrated that the gypsum fiber could be distributed in the CPC substrate and produce long-range micropore architectures. In particular, incorporation of gypsum fibers would tune the ion release, produce tunnel-like pore networks in vitro, and promote new bone tissue regeneration in rabbit femoral bone defects in vivo. Appropriate gypsum fibers (16 and 24 wt %) could enhance bone defect repair and cement biodegradation. These results demonstrate that the highly biodegradable cement fibers could mediate the microstructures of conventional CPC biomaterials, and such a bicomponent composite strategy may be beneficial for expanding clinical CPC-based applications.


Assuntos
Sulfato de Cálcio , Hidroxiapatitas , Osteogênese , Animais , Coelhos , Sulfato de Cálcio/farmacologia , Pós , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química
13.
J Biomed Mater Res B Appl Biomater ; 112(1): e35347, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247237

RESUMO

Bone tissue has the capacity to regenerate under healthy conditions, but complex cases like critically sized defects hinder natural bone regeneration, necessitating surgery, and use of a grafting material for rehabilitation. The field of bone tissue engineering (BTE) has pioneered ways to address such issues utilizing different biomaterials to create a platform for cell migration and tissue formation, leading to improved bone reconstruction. One such approach involves 3D-printed patient-specific scaffolds designed to aid in regeneration of boney defects. This study aimed to develop and characterize 3D printed scaffolds composed of type I collagen augmented with ß-tricalcium phosphate (COL/ß-TCP). A custom-built direct inkjet write (DIW) printer was used to fabricate ß-TCP, COL, and COL/ß-TCP scaffolds using synthesized colloidal gels. After chemical crosslinking, the scaffolds were lyophilized and subjected to several characterization techniques, including light microscopy, scanning electron microscopy, and x-ray diffraction to evaluate morphological and chemical properties. In vitro evaluation was performed using human osteoprogenitor cells to assess cytotoxicity and proliferative capacity of the different scaffold types. Characterization results confirmed the presence of ß-TCP in the 3D printed COL/ß-TCP scaffolds, which exhibited crystals that were attributed to ß-TCP due to the presence of calcium and phosphorus, detected through energy dispersive x-ray spectroscopy. In vitro studies showed that the COL/ß-TCP scaffolds yielded more favorable results in terms of cell viability and proliferation compared to ß-TCP and COL scaffolds. The novel COL/ß-TCP scaffold constructs hold promise for improving BTE applications and may offer a superior environment for bone regeneration compared with conventional COL and ß-TCP scaffolds.


Assuntos
Fosfatos de Cálcio , Colágeno Tipo I , Bovinos , Animais , Humanos , Fosfatos de Cálcio/farmacologia , Regeneração Óssea , Microscopia Eletrônica de Varredura
14.
Dent Mater ; 40(3): 508-519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199893

RESUMO

OBJECTIVES: Dental implant placement frequently requires preceding bone augmentation, for example, with hydroxyapatite (HA) or ß-tricalcium phosphate (ß-TCP) granules. However, HA is degraded very slowly in vivo and for ß-TCP inconsistent degradation profiles from too rapid to rather slow are reported. To shorten the healing time before implant placement, rapidly resorbing synthetic materials are of great interest. In this study, we investigated the potential of magnesium phosphates in granular form as bone replacement materials. METHODS: Spherical granules of four different materials were prepared via an emulsion process and investigated in trabecular bone defects in sheep: struvite (MgNH4PO4·6H2O), K-struvite (MgKPO4·6H2O), farringtonite (Mg3(PO4)2) and ß-TCP. RESULTS: All materials except K-struvite exhibited promising support of bone regeneration, biomechanical properties and degradation. Struvite and ß-TCP granules degraded at a similar rate, with a relative granules area of 29% and 30% of the defect area 4 months after implantation, respectively, whereas 18% was found for farringtonite. Only the K-struvite granules degraded too rapidly, with a relative granules area of 2% remaining, resulting in initial fibrous tissue formation and intermediate impairment of biomechanical properties. SIGNIFICANCE: We demonstrated that the magnesium phosphates struvite and farringtonite have a comparable or even improved degradation behavior in vivo compared to ß-TCP. This emphasizes that magnesium phosphates may be a promising alternative to established calcium phosphate bone substitute materials.


Assuntos
Substitutos Ósseos , Compostos de Magnésio , Magnésio , Fosfatos , Ovinos , Animais , Estruvita , Magnésio/farmacologia , Teste de Materiais , Fosfatos de Cálcio/farmacologia , Substitutos Ósseos/farmacologia , Durapatita , Regeneração Óssea
15.
Acta Biomater ; 176: 432-444, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185232

RESUMO

The use of bone substitute materials is crucial for the healing of large bone defects. Immune response induced by bone substitute materials is essential in bone regeneration. Prior research has mainly concentrated on innate immune cells, such as macrophages. Existing research suggests that T lymphocytes, as adaptive immune cells, play an indispensable role in bone regeneration. However, the mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. This study demonstrates that CD4+ T cells are indispensable for ectopic osteogenesis by biphasic calcium phosphate (BCP). Subsequently, the recruitment of CD4+ T cells is closely associated with the activation of calcium channels in macrophages by BCP to release chemokines Ccl3 and Ccl17. Finally, these recruited CD4+ T cells are predominantly Tregs, which play a significant role in ectopic osteogenesis by BCP. These findings not only shed light on the immune-regenerative process after bone substitute material implantation but also establish a theoretical basis for developing bone substitute materials for promoting bone tissue regeneration. STATEMENT OF SIGNIFICANCE: Bone substitute material implantation is essential in the healing of large bone defects. Existing research suggests that T lymphocytes are instrumental in bone regeneration. However, the specific mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. In this study, we demonstrate that activation of calcium channels in macrophages by biphasic calcium phosphate (BCP) causes them to release the chemokines Ccl3 and Ccl17 to recruit CD4+ T cells, predominantly Tregs, which play a crucial role in ectopic osteogenesis by BCP. Our findings provide a theoretical foundation for developing bone substitute material for bone tissue regeneration.


Assuntos
Substitutos Ósseos , Substitutos Ósseos/farmacologia , Regeneração Óssea , Hidroxiapatitas/farmacologia , Canais de Cálcio , Quimiocinas , Osteogênese , Fosfatos de Cálcio/farmacologia
16.
Acta Biomater ; 176: 417-431, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272200

RESUMO

Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), ß-tricalcium phosphate (ß-TCP) and two biphasic composites of HA/ß-TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for ß-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaP-based bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. STATEMENT OF SIGNIFICANCE: The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to ß-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important.


Assuntos
Fosfatos de Cálcio , Osteogênese , Animais , Humanos , Camundongos , Camundongos Nus , Fosfatos de Cálcio/farmacologia , Materiais Biocompatíveis/farmacologia , Durapatita/farmacologia , Hidroxiapatitas/farmacologia , Cerâmica
17.
Langmuir ; 40(3): 1747-1760, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181199

RESUMO

Osteocalcin is the most abundant noncollagenous bone protein and the functions in bone remineralization as well as in inhibition of bone growth have remained unclear. In this contribution, we explain the dual role of osteocalcin in the nucleation of new calcium phosphate during bone remodeling and in the inhibition of hydroxyapatite crystal growth at the molecular scale. The mechanism was derived using pH-resolved all-atom models for the protein, phosphate species, and hydroxyapatite, along with molecular dynamics simulations and experimental and clinical observations. Osteocalcin binds to (hkl) hydroxyapatite surfaces through multiple residues, identified in this work, and the fingerprint of binding residues varies as a function of the (hkl) crystal facet and pH value. On balance, the affinity of osteocalcin to hydroxyapatite slows down crystal growth. The unique tricalcium γ-carboxylglutamic acid (Gla) domain hereby rarely adsorbs to hydroxyapatite surfaces and faces instead toward the solution. The Gla domain enables prenucleation of calcium phosphate for new bone formation at a slightly acidic pH of 5. The growth of prenucleation clusters of calcium phosphate continues upon increase in pH value from 5 to 7 and is much less favorable, or not observed, on the native osteocalcin structure at and above neutral pH values of 7. The results provide mechanistic insight into the early stages of bone remodeling from the molecular scale, help inform mutations of osteocalcin to modify binding to apatites, support drug design, and guide toward potential cures for osteoporosis and hyperosteogeny.


Assuntos
Osso e Ossos , Durapatita , Osteocalcina/genética , Osteocalcina/química , Osteocalcina/metabolismo , Osso e Ossos/metabolismo , Fosfatos de Cálcio/farmacologia
18.
J Biomed Mater Res B Appl Biomater ; 112(1): e35335, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772460

RESUMO

Calcium phosphate cement (CPC) is generally used for bone repair and augmentation. Poloxamers are tri-block copolymers that are used as surfactants but have applications in drug and antibiotic delivery. However, their biological effects on bone regeneration systems remain unelucidated. Here, we aimed to understand how supplementing the prototype CPC with poloxamer would impact cellular activity and its function as a bone-grafting material. A novel CPC, modified beta-tricalcium phosphate (mß-TCP) powder, was developed through a planetary ball-milling process using a beta-tricalcium phosphate (ß-TCP). The mß-TCP dissolves rapidly and accelerates hydroxyapatite precipitation; successfully shortening the cement setting time and enhancing the strength. Furthermore, the addition of poloxamer 407 to mß-TCP could reduce the risk of leakage from bone defects and improve fracture toughness while maintaining mechanical properties. In this study, the poloxamer addition effects (0.05 and 0.1 g/mL) on the cellular activities of MC3T3-E1 cells cultured in vitro were investigated. The cell viability of mß-TCP containing poloxamer 407 was similar to that of mß-TCP. All specimens showed effective cell attachment and healthy polygonal extension of the cytoplasm firmly attached to hydroxyapatite (HA) crystals. Therefore, even with the addition of poloxamer to mß-TCP, it does not have a negative effect to osteoblast growth. These data demonstrated that the addition of poloxamer 407 to mß-TCP might be considered a potential therapeutic application for the repair and regeneration of bone defects.


Assuntos
Fosfatos de Cálcio , Poloxâmero , Poloxâmero/farmacologia , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Hidroxiapatitas
19.
Acta Biomater ; 174: 447-462, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000527

RESUMO

Phosphoserine is a ubiquitous molecule found in numerous proteins and, when combined with alpha-tricalcium phosphate (α-TCP) powder, demonstrates the ability to generate an adhesive biomaterial capable of stabilising and repairing bone fractures. Design of Experiments (DoE) approach was able to optimise the composition of phosphoserine-modified calcium phosphate cement (PM-CPC) demonstrating that the liquid:powder ratio (LPR) and quantity of phosphoserine (wt%) significantly influenced the handling, mechanical, and adhesion properties. Subsequently, the DoE optimisation process identified the optimal PM-CPC formulation, exhibiting a compressive strength of 29.2 ± 4.9 MPa and bond/shear strength of 3.6 ± 0.9 MPa after a 24 h setting reaction. Moreover, the optimal PM-CPC composition necessitated a mixing time of 20 s and displayed an initial setting time between 3 and 4 min, thus enabling homogenous mixing and precise delivery within a surgical environment. Notably, the PM-CPC demonstrated a bone-to-bone bond strength of 1.05 ± 0.3 MPa under wet conditions, coupled with a slow degradation rate during the first five days. These findings highlight the ability of PM-CPC to effectively support and stabilise bone fragments during the initial stages of natural bone healing. The developed PM-CPC formulations fulfil the clinical requirements for working and setting times, static mechanical, degradation properties, and injectability, enabling surgeons to stabilise complex bone fractures. This innovative bioinspired adhesive represents a significant advancement in the treatment of challenging bone injuries, offering precise delivery within a surgical environment and the potential to enhance patient outcomes. STATEMENT OF SIGNIFICANCE: This manuscript presents a noteworthy contribution to the field of bone fracture healing and fixation by introducing a novel phosphoserine-modified calcium phosphate cement (PM-CPC) adhesive by incorporating phosphoserine and alpha-TCP. This study demonstrates the fabrication and extensive characterisation of this adhesive biomaterial that holds great promise for stabilising and repairing complex bone fractures. Design of Experiment (DoE) software was used to investigate the correlations between process, property, and structure of the adhesive, resulting in a cost-effective formulation with desirable physical and handling properties. The PM-CPC adhesive exhibited excellent adhesion and cohesion properties in wet-field conditions. This research offers significant potential for clinical translation and contributes to the ongoing advancements in bone tissue engineering.


Assuntos
Fraturas Ósseas , Ortopedia , Humanos , Fosfosserina , Pós , Materiais Biocompatíveis , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Teste de Materiais
20.
Int J Biol Macromol ; 254(Pt 3): 127797, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949272

RESUMO

Biodegradable orthopedic implants are essential for restoring the physiological structure and function of bone tissue while ensuring complete degradation after recovery. Polylactic acid (PLA), a biodegradable polymer, is considered a promising material due to its considerable mechanical properties and biocompatibility. However, further improvements are necessary to enhance the mechanical strength and bioactivity of PLA for reliable load-bearing orthopedic applications. In this study, a multifunctional PLA-based composite was fabricated by incorporating tricalcium phosphate (TCP) microspheres and magnesium (Mg) particles homogenously at a volume fraction of 40 %. This approach aims to enhance mechanical strength, accelerate pore generation, and improve biological and antibacterial performance. Mg content was incorporated into the composite at varying values of 1, 3, and 5 vol% (referred to as PLA/TCP-1 Mg, PLA/TCP-3 Mg, and PLA/TCP-5 Mg, respectively). The compressive strength and stiffness were significantly enhanced in all composites, reaching 87.7, 85.9, and 84.1 MPa, and 2.7, 3.0, and 3.1 GPa, respectively. The degradation test indicated faster elimination of the reinforcers as the Mg content increased, resulting in accelerated pore generation to induce enhanced osseointegration. Because PLA/TCP-3 Mg and PLA/TCP-5 Mg exhibited cracks in the PLA matrix due to rapid corrosion of Mg forming corrosion byproducts, to optimize the Mg particle content, PLA/TCP-1 Mg was selected for further evaluation. As determined by in vitro biological and antibacterial testing, PLA/TCP-1 Mg showed enhanced bioactivity with pre-osteoblast cells and exhibited antibacterial properties by suppressing bacterial colonization. Overall, the multifunctional PLA/TCP-Mg composite showed improved mechanobiological performance, making it a promising material for biodegradable orthopedic implants.


Assuntos
Magnésio , Osseointegração , Magnésio/farmacologia , Magnésio/química , Poliésteres/farmacologia , Poliésteres/química , Antibacterianos/farmacologia , Teste de Materiais , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...